Influence of interference fit size on hole deformation and residual stress in hi-lock bolt insertion

Author:

Jiang Jiefeng12,Bi Yunbo1,Dong Huiyue1,Ke Yinglin1,Fan Xintian3,Du Kunpeng3

Affiliation:

1. Department of Mechanical Engineering, Zhejiang University, Hangzhou, People’s Republic of China

2. Department of Information, Mechanical and Electrical Engineering, Qianjiang College, Hangzhou Normal University, Hangzhou, People’s Republic of China

3. Component assembly Factory, Xi’an Aircraft Industry (Group) Company LTD, Xi’an, People’s Republic of China

Abstract

The interference fit can improve the fatigue performance of mechanical joints and is widely used in aircraft assembly. In this paper, specimens of lap plates and several interference fit sizes were designed, and then the interference fit hi-lock bolt insertion was carried out in an experimental test. Using the commercial finite element software ABAQUS, a two-dimensional axisymmetric finite element model was established to simulate the bolt insertion process. The finite element model was validated by comparison of experimental results and finite element prediction for insertion force and protuberance height. After the interference fitted bolt insertion, the changing characteristics of the non-uniform hole expansion and protuberance were presented with increases in interference fit size. Under low level of interference fit, the tensile hoop stress was produced mainly on the hole wall, and changed into compressive hoop stress when interference fit size is larger. The maximum tensile hoop stress point on faying surfaces went away from the hole wall with interference fit size increasing.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3