Investigation of the Layer Effects Formed by W-EDM on Electrochemical Grooving of Stellite 21

Author:

Anil Semih Ekrem1,Demirtas Hasan2ORCID,Kalayci Adnan1,Cebi Abdulkadir2ORCID

Affiliation:

1. Samsun Yurt Savunma, Samsun 55300, Turkey

2. Department of Mechanical Engineering, Engineering Faculty, University of Samsun, Samsun 55420, Turkey

Abstract

Machining hard-to-cut materials, such as cobalt (Co)-based superalloys, is a common problem in manufacturing industries. Background: wire electrical discharge machining (W-EDM) is one of the widely used cutting processes that causes layer (white layer—WL and heat-affected zone—HAZ) formation, and microcracks on the material’s surface. Purpose: this study investigates the effects of WL and HAZ on the electrochemical grooving (EC grooving) performance of Co-based superalloys. Two different surface types (W-EDMed and VFed) were used in the experiments. Result: the experiments showed that material removal rate (MRR) values increased up to 212.49% and 122.23% for vibratory finished (VFed) and wire-electrical-discharge-machined (W-EDMed) surfaces, respectively. Conclusion: This result indicates the presence of HAZ and WL that prevent current transition between two electrodes. However, increased voltage causes an increase in surface roughness, with increment rates at 71.13% and 36.08% for VFed and W-EDMed surfaces, respectively. Moreover, for the VFed surfaces, the groove lost its flatness at the bottom after an approximately 100 µm depth due to the different electrochemical machineabilities of HAZ and real surface texture. This result can be attributed to the different microstructures (HAZ and surface texture) showing different electrochemical dissolution rates. Therefore, high-depth distance HAZ and WL must be removed from the workpiece.

Funder

Defence Industry Agency, Presidency of the Republic of Turkiye

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3