Intelligent Fault Diagnosis of an Aircraft Fuel System Using Machine Learning—A Literature Review

Author:

Li Jiajin1ORCID,King Steve1ORCID,Jennions Ian1ORCID

Affiliation:

1. Integrated Vehicle Health Management Centre, School of Aerospace, Transport, and Manufacturing, Cranfield University, Bedfordshire MK43 0AL, UK

Abstract

The fuel system, which aims to provide sufficient fuel to the engine to maintain thrust and power, is one of the most critical systems in the aircraft. However, possible degradation modes, such as leakage and blockage, can lead to component failure, affect performance, and even cause serious accidents. As an advanced maintenance strategy, Condition Based Maintenance (CBM) can provide effective coverage, by combining state-of-the-art sensors with data acquisition and analysis techniques to guide maintenance before the asset’s degradation becomes serious. Artificial Intelligence (AI), particularly machine learning (ML), has proved effective in supporting CBM, for analyzing data and generating predictions regarding the asset’s health condition, thus influencing maintenance plans. However, from an engineering perspective, the output of ML algorithms, usually in the form of data-driven neural networks, has come into question in practice, as it can be non-intuitive and lacks the ability to provide unambiguous engineering signals to maintainers, making it difficult to trust. Engineers are interested in a deterministic decision-making process and how it is being revealed; algorithms should be able to certify and convince engineers to approve recommended actions. Explainable AI (XAI) has emerged as a potential solution, providing some of the logic on how the output is derived from the input given, which may help users understand the diagnostic result of the algorithm. In order to inspire and advise data scientists and engineers who are about to develop and use AI approaches in fuel systems, this paper explores the literature of experiment, simulation, and AI-based diagnostics for the fuel system to make an informed statement as to the progress that has been made in intelligent fault diagnostics for fuel systems, emphasizing the necessity of giving unambiguous engineering signals to maintainers, as well as highlighting potential areas for future research.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3