Classification of Wall Following Robot Movements Using Genetic Programming Symbolic Classifier

Author:

Anđelić NikolaORCID,Baressi Šegota SandiORCID,Glučina MatkoORCID,Lorencin IvanORCID

Abstract

The navigation of mobile robots throughout the surrounding environment without collisions is one of the mandatory behaviors in the field of mobile robotics. The movement of the robot through its surrounding environment is achieved using sensors and a control system. The application of artificial intelligence could potentially predict the possible movement of a mobile robot if a robot encounters potential obstacles. The data used in this paper is obtained from a wall-following robot that navigates through the room following the wall in a clockwise direction with the use of 24 ultrasound sensors. The idea of this paper is to apply genetic programming symbolic classifier (GPSC) with random hyperparameter search and 5-fold cross-validation to investigate if these methods could classify the movement in the correct category (move forward, slight right turn, sharp right turn, and slight left turn) with high accuracy. Since the original dataset is imbalanced, oversampling methods (ADASYN, SMOTE, and BorderlineSMOTE) were applied to achieve the balance between class samples. These over-sampled dataset variations were used to train the GPSC algorithm with a random hyperparameter search and 5-fold cross-validation. The mean and standard deviation of accuracy (ACC), the area under the receiver operating characteristic (AUC), precision, recall, and F1−score values were used to measure the classification performance of the obtained symbolic expressions. The investigation showed that the best symbolic expressions were obtained on a dataset balanced with the BorderlineSMOTE method with ACC¯±SD(ACC), AUC¯macro±SD(AUC), Precision¯macro±SD(Precision), Recall¯macro±SD(Recall), and F1−score¯macro±SD(F1−score) equal to 0.975×1.81×10−3, 0.997±6.37×10−4, 0.975±1.82×10−3, 0.976±1.59×10−3, and 0.9785±1.74×10−3, respectively. The final test was to use the set of best symbolic expressions and apply them to the original dataset. In this case the ACC¯±SD(ACC), AUC¯±SD(AUC), Precision¯±SD(Precision), Recall¯±SD(Recall), and F1−score¯±SD(F1−Score) are equal to 0.956±0.05, 0.9536±0.057, 0.9507±0.0275, 0.9809±0.01, 0.9698±0.00725, respectively. The results of the investigation showed that this simple, non-linearly separable classification task could be solved using the GPSC algorithm with high accuracy.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3