Obstacle Detection System for Agricultural Mobile Robot Application Using RGB-D Cameras

Author:

Skoczeń MagdaORCID,Ochman MarcinORCID,Spyra Krystian,Nikodem MaciejORCID,Krata Damian,Panek Marcin,Pawłowski Andrzej

Abstract

Mobile robots designed for agricultural tasks need to deal with challenging outdoor unstructured environments that usually have dynamic and static obstacles. This assumption significantly limits the number of mapping, path planning, and navigation algorithms to be used in this application. As a representative case, the autonomous lawn mowing robot considered in this work is required to determine the working area and to detect obstacles simultaneously, which is a key feature for its working efficiency and safety. In this context, RGB-D cameras are the optimal solution, providing a scene image including depth data with a compromise between precision and sensor cost. For this reason, the obstacle detection effectiveness and precision depend significantly on the sensors used, and the information processing approach has an impact on the avoidance performance. The study presented in this work aims to determine the obstacle mapping accuracy considering both hardware- and information processing-related uncertainties. The proposed evaluation is based on artificial and real data to compute the accuracy-related performance metrics. The results show that the proposed image and depth data processing pipeline introduces an additional distortion of 38 cm.

Funder

Narodowe Centrum Badań i Rozwoju

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Field Obstacle Detection and Location Method Based on Binocular Vision;Agriculture;2024-09-01

2. Robust colored point cloud alignment based on L*a*b* guided and Cauchy kernel;Computational Intelligence;2024-06

3. Land Drone System;2024 8th International Conference on Image and Signal Processing and their Applications (ISPA);2024-04-21

4. Data Fusion of RGB and Depth Data with Image Enhancement;Journal of Imaging;2024-03-21

5. A review of the Robotic Artificial Hand: (Advances, Applications and Challenges);2024 10th International Conference on Artificial Intelligence and Robotics (QICAR);2024-02-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3