Tires and Vehicle Lateral Dynamic Performance: A Corrective Algorithm for the Influence of Temperature

Author:

Savant Simone1,De Carvalho Pinheiro Henrique1ORCID,Sacchi Matteo Eugenio2,Conti Cinzia2,Carello Massimiliana1ORCID

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy

2. Vehicle Dynamics—Balocco Proving Ground, Stellantis, 10129 Balocco, Italy

Abstract

The automotive industry is experiencing increasing competition, and vehicle development is becoming increasingly complex. Manufacturers must therefore be able to rapidly compare the outcomes of experimental tests carried out under different conditions. Robust simulation tools that can adjust for external factors have the potential to save a significant amount of time. In this regard, the purpose of this paper is to propose a method for evaluating the effect of asphalt temperature on tire and vehicle lateral dynamic performance, based on empirical data. Because rubber is a viscoelastic material, its properties are heavily influenced by the operating conditions. Therefore, a corrective algorithm must be created to enable the transfer of results obtained from tests carried out under different asphalt temperature conditions to a reference temperature of 25 °C. This article presents an analytical model that accurately describes this phenomenon, as well as the methods employed to generalize and optimize the model. Generalizability represents a crucial aspect of this research, as the model must be widely applicable across several vehicle categories while requiring minimal data to perform the corrections effectively. Finally, the analytical compensatory tool was incorporated into a MATLAB bicycle model to update the numerical transfer function measurements that describe the vehicle’s dynamic behavior during experimental maneuvers. These results indicate that modest data is needed to achieve good levels of accuracy, making the model and vehicle dynamics implementation promising.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Path planning development for human-like virtual driver;SAE Technical Paper Series;2024-01-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3