Path planning development for human-like virtual driver

Author:

de Carvalho Pinheiro Henrique,Lubertino Salvatore,Carello Massimiliana

Abstract

<div class="section abstract"><div class="htmlview paragraph">Virtual simulation is a fundamental tool for the development of new vehicles, both for individual components and for complete subsystems and full vehicles. Many software tools exist in the automotive sector to assess full-vehicle behavior and performance, including multibody software and algorithms based on 14 (or more) degrees-of-freedom vehicle dynamics models. In order to reproduce the testing maneuvers and typical vehicle mission, a key part of such simulation tools is the virtual driver algorithm. It is essential to implement a control logic that reproduces the handling response of the driver, so that the closed-loop maneuvers can be evaluated. However, the response of typical virtual drivers is not always similar to the human driving characteristics. Virtual driver algorithms can perform very fast, precise, and smooth steering and pedal actions, while humans display a more variable, delayed and often not optimal actions.</div><div class="htmlview paragraph">The aim of this article is to describe the concept and implementation of a novel human-like path planning model. The algorithm is developed in MATLAB environment, creating a function that obtains a human-like path and vision logic by setting some key-parameters. They are: Distance Factor, Widening Factor, Cutting Factor, Inner Smoothing Factor and Outer Smoothing Factor.</div><div class="htmlview paragraph">The parameters - essential to alter the shape of the trajectory described in a track - have their values attributed by fitting experimental data gathered during test sessions in a driving simulator. The vehicle model used to implement the path planning system is based on the VI-Grade CarRealTime environment, in co-simulation with MATLAB/Simulink, and the results indicate that the novel algorithm has a closer correlation with the DiL tests than the original virtual driver. The stronger correlation is confirmed also in the comparison between different human drivers, showing that the proposed strategy is robust to driving styles.</div><div class="htmlview paragraph">Among the potential applications of this new “human-like virtual driver” approach is the ability to better predict human driver response during tuning and optimization of vehicles and control systems, apart from a further understanding of human driving behavior useful for tasks like ADAS and autonomous driving.</div></div>

Publisher

SAE International

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3