Optimizing Layer Thickness and Width for Fused Filament Fabrication of Polyvinyl Alcohol in Three-Dimensional Printing and Support Structures

Author:

Moradi Mahmoud1ORCID,Karamimoghadam Mojtaba2,Meiabadi Saleh3ORCID,Rasool Shafqat1,Casalino Giuseppe2ORCID,Shamsborhan Mahmoud4ORCID,Sebastian Pranav Kattungal1,Poulose Arun1,Shaiju Abijith1,Rezayat Mohammad5ORCID

Affiliation:

1. Faculty of Arts, Science and Technology, University of Northampton, Northampton NN1 5PH, UK

2. Department of Mechanics, Mathematics and Management, Polytechnic University of Bari, Via Orabona 4, 70125 Bari, Italy

3. Department of Mechanical Engineering, École de Technologie Supérieure, 1100 Notre-Dame West, Montreal, QC H3C 1K3, Canada

4. Department of Mechanical Engineering, University of Zakho, Kurdistan Region 42001, Iraq

5. Center for Structural Integrity, Micromechanics, and Reliability of Materials (CIEFMA)-Department of Materials Science and Engineering, Universitat Politècnica de Catalunya-BarcelonaTECH, 08019 Barcelona, Spain

Abstract

Polyvinyl Alcohol (PVA) is frequently applied as a support material in 3D printing, especially in the crafting of intricate designs and projecting elements. It functions as a water-soluble filament, often paired with materials like ABS or PLA. PVA serves as a momentary scaffold, supporting the jutting segments of a 3D model throughout the printing process. Subsequent to printing, the primary component can be effortlessly isolated by dissolving the PVA support using water. PVA, being a pliable and eco-friendly polymer, is susceptible to moisture. Its aqueous solubility renders it a prime selection for bolstering 3D print structures. In this investigation, equivalent-sized samples were 3D printed utilizing an Ultimaker 3D printer to assess the potency of PVA-generated specimens. Tensile examinations were executed on each sample employing a testing apparatus. The durability of the specimens was notably impacted by the input parameters, specifically the stratum width and stratum thickness. Strength dwindled as stratum width increased, whereas it rose with augmented stratum thickness. A few specimens with heightened stratum width and compromised quality displayed subpar performance during the tensile assessment. The findings unveiled a peak tensile strength of 17.515 MPa and a maximum load of 1600 N. Attaining an optimal degree of material utilization led to a decrease in filament consumption by 8.87 g, all the while upholding a MTS (maximum tensile strength) of 10.078 MPa.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3