MBD-Based Machining Feature Recognition and Process Route Optimization

Author:

Ding Shuhui,Guo Zhongyuan,Wang Bin,Wang Haixia,Ma Fai

Abstract

Machining feature recognition is considered the key connecting technique to the integration of Computer-Aided Design (CAD) and Computer-Aided Process Planning (CAPP), and decision-making of the part processing scheme and the optimization of process route can effectively improve the processing efficiency and reduce the cost of product machining cost. At present, for the recognition of machining features in CAD models, there is a lack of a systematic method to consider process information (such as tolerance and roughness) and an effective process route optimization method to plan part processing procedures. Here we represent a novel model processing feature recognition method, and, on the basis of feature processing plan decision, realize the optimization of the process route. On the basis of a building model Attributed Adjacency Graph (AAG) based on model geometry, topology, and process information, we propose an AAG decomposition and reconstruction method based on Decomposed Base Surface (DBS) and Joint Base Surface (JBS) as well as the recognition of model machining features through Attributed Adjacency Matrix-based (AAM) feature matching. The feature machining scheme decision method based on fuzzy comprehensive evaluation is adopted, and the decision is realized by calculating the comprehensive evaluation index. Finally, the Machining Element Directed Graph (MEDGraph) is established based on the constraint relationship between Machining Elements (MEs). The improved topological sorting algorithm lists the topological sequences of all MEs. The evaluation function is constructed with the processing cost or efficiency as the optimization objective to obtain the optimal process route. Our research provides a new method for model machining feature recognition and process route optimization. Applications of the proposed approach are provided to validate the method by case study.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3