An Unscented Kalman Filter Online Identification Approach for a Nonlinear Ship Motion Model Using a Self-Navigation Test

Author:

Zheng Jian,Yan Duowen,Yan Ming,Li Yun,Zhao Yabing

Abstract

This paper proposes a method for the online parameter identification of nonlinear ship motion systems. First, the motion system of a ship is nonlinear, and in the course of sailing, the motion parameters of the ship will change with the change of the motion state of the ship and the sailing environment. To achieve the effect of real-time identification, we adopted an online receding horizon identification method. Second, identification parameters are the essential elements in the navigation control of intelligent merchant ships, and high-precision identification results can achieve better control effects. Therefore, we used an unscented Kalman filter (UKF) that has simpler mathematical structure and higher feedback efficiency than other identification algorithms listed in this paper, such as extended the Kalman filter, Kalman filtering and Ordinary Least Squares, as the identification scheme design algorithm, which is applied to ship motion system identification. Then, to solve the problem of significant identification errors in complex environments, we design a navigation identification framework combining a UKF and rolling wavelet denoising to realize the effect of the online identification of ships. Finally, a Korea Research Institute of Ships and Ocean Engineering (KRISO) Container Ship (KCS) was used for a self-navigation model experiment and data collection. The collected data and identification data were compared and analyzed. By comparing different identification algorithms before and after denoising, it was verified that the UKF algorithm proposed in this paper is superior relative to other traditional algorithms in identifying ship motion systems.

Funder

Nation Nature Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3