Perspectives on SCADA Data Analysis Methods for Multivariate Wind Turbine Power Curve Modeling

Author:

Astolfi Davide

Abstract

Wind turbines are rotating machines which are subjected to non-stationary conditions and their power depends non-trivially on ambient conditions and working parameters. Therefore, monitoring the performance of wind turbines is a complicated task because it is critical to construct normal behavior models for the theoretical power which should be extracted. The power curve is the relation between the wind speed and the power and it is widely used to monitor wind turbine performance. Nowadays, it is commonly accepted that a reliable model for the power curve should be customized on the wind turbine and on the site of interest: this has boosted the use of SCADA for data-driven approaches to wind turbine power curve and has therefore stimulated the use of artificial intelligence and applied statistics methods. In this regard, a promising line of research regards multivariate approaches to the wind turbine power curve: these are based on incorporating additional environmental information or working parameters as input variables for the data-driven model, whose output is the produced power. The rationale for a multivariate approach to wind turbine power curve is the potential decrease of the error metrics of the regression: this allows monitoring the performance of the target wind turbine more precisely. On these grounds, in this manuscript, the state-of-the-art is discussed as regards multivariate SCADA data analysis methods for wind turbine power curve modeling and some promising research perspectives are indicated.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Reference42 articles.

1. Atmospheric turbulence affects wind turbine nacelle transfer functions

2. The Influence of Turbulence and Vertical Wind Profile in Wind Turbine Power Curve. Progress in Turbulence and Wind Energy IV;Honrubia,2012

3. Power Performance Measurements of Electricity Producing Wind Turbines,2005

4. Approaches to wind power curve modeling: A review and discussion

5. Modelling and analysis of real-world wind turbine power curves: Assessing deviations from nominal curve by neural networks

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3