Characterizing the Wake Effects on Wind Power Generator Operation by Data-Driven Techniques

Author:

Astolfi Davide1,De Caro Fabrizio2ORCID,Vaccaro Alfredo2ORCID

Affiliation:

1. Department of Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy

2. Department of Engineering, University of Sannio, Piazza Roma 21, 82100 Benevento, Italy

Abstract

Wakes between neighboring wind turbines are a significant source of energy loss in wind farm operations. Extensive research has been conducted to analyze and understand wind turbine wakes, ranging from aerodynamic descriptions to advanced control strategies. However, there is a relatively overlooked research area focused on characterizing real-world wind farm operations under wake conditions using Supervisory Control And Data Acquisition (SCADA) parameters. This study aims to address this gap by presenting a detailed discussion based on SCADA data analysis from a real-world test case. The analysis focuses on two selected wind turbines within an onshore wind farm operating under wake conditions. Operation curves and data-driven methods are utilized to describe the turbines’ performance. Particularly, the analysis of the operation curves reveals that a wind turbine operating within a wake experiences reduced power production not only due to the velocity deficit but also due to increased turbulence intensity caused by the wake. This effect is particularly prominent during partial load operation when the rotational speed saturates. The turbulence intensity, manifested in the variability of rotational speed and blade pitch, emerges as the crucial factor determining the extent of wake-induced power loss. The findings indicate that turbulence intensity is strongly correlated with the proximity of the wind direction to the center of the wake sector. However, it is important to consider that these two factors may convey slightly different information, possibly influenced by terrain effects. Therefore, both turbulence intensity and wind direction should be taken into account to accurately describe the behavior of wind turbines operating within wakes.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference49 articles.

1. Modelling and measuring flow and wind turbine wakes in large wind farms offshore;Barthelmie;Wind Energy Int. J. Prog. Appl. Wind Power Convers. Technol.,2009

2. Gaumond, M., Réthoré, P.E., Bechmann, A., Ott, S., Larsen, G.C., Peña, A., and Hansen, K.S. (2012, January 9–11). Benchmarking of wind turbine wake models in large offshore wind farms. Proceedings of the Science of Making Torque from Wind Conference, Oldenburg, Germany.

3. Large-eddy simulations of the Lillgrund wind farm;Nilsson;Wind Energy,2015

4. An evaluation of the predictive accuracy of wake effects models for offshore wind farms;Walker;Wind Energy,2016

5. Data analysis and simulation of the Lillgrund wind farm;Sebastiani;Wind Energy,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3