Yaw Stability Research of the Distributed Drive Electric Bus by Adaptive Nonsingular Fast Terminal Sliding Mode Control

Author:

Zhu Huimin,Zhang FengORCID,Zhang Yong,Su Liang,Gong Gang

Abstract

Due to the high center of gravity of distributed drive electric buses, it is crucial to enhance their stability and sliding mode control (SMC) is an effective method to enhance vehicle yaw stability. However, the traditional SMC needs to know the upper limits of the interference term in advance and select a better switching gain to obtain a better control effect, which is impossible for vehicle control. To solve the existing problems, an improved adaptive nonsingular fast terminal sliding mode (ANFTSM) control is presented to enhance the stability of distributed drive electric bus. An uncertainty term is introduced as a switching term in the sliding mode variable and the switching gain in the controller is obtained by parameter adaptation without knowing any uncertainty information. In addition, to enhance the stability of the vehicle in real-time, an adaptive neuro fuzzy inference system (ANFIS) for the weighting factor in the sliding surface is adjusted. A co-simulation of Matlab/Simulink–TruckSim is performed to verify the effectiveness of the algorithm under two typical conditions. The results indicate that the proposed control can follow the ideal value better which improves handling stability and chattering is weaker. Furthermore, the proposed control requires fewer control actions, and also reduces the motor torque variation.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3