Stability Regions of Vehicle Lateral Dynamics: Estimation and Analysis

Author:

Huang Yiwen1,Liang Wei2,Chen Yan3

Affiliation:

1. School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85281

2. RD Powertrain Tech Shanghai 200020, China

3. The Polytechnic School Arizona State University, Mesa, AZ 85212

Abstract

Abstract A new method is proposed to estimate and analyze the vehicle lateral stability region, which provides a direct and intuitive demonstration for the safety and stability control of ground vehicles. Based on a four-wheel vehicle model and a nonlinear two-dimensional (2D) analytical LuGre tire model, a local linearization method is applied to estimate the vehicle lateral stability regions by analyzing the vehicle stability at each operation point on a phase plane, which includes but not limited to the equilibrium points. As the collections of all the locally stable operation points, the estimated stability regions are conservative because both vehicle and tire stability are simultaneously considered, which are especially important for characterizing the stability features of highly/fully automated ground vehicles (AGV). The obtained lateral stability regions can be well explained by the vehicle characteristics of oversteering and understeering in the context of vehicle handling stability. The impacts of vehicle lateral load transfer, longitudinal velocity, tire-road friction coefficient, and steering angle on the estimated stability regions are presented and discussed. To validate the correctness of the estimated stability regions, a case study by matlab/simulink and CarSim® co-simulation is presented and discussed.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Reference41 articles.

1. Intelligent Transport Systems and Effects on Road Traffic Accidents: State of the Art;IET Intell. Transp. Syst.,2007

2. Towards Fully Autonomous Driving: Systems and Algorithms,2011

3. Multimodal Fusion Object Detection System for Autonomous Vehicles;ASME J. Dyn. Syst., Meas., Control,2019

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3