Abstract
The research into the tracking methods of unmanned aerial vehicles (UAVs) for agile targets is multi-disciplinary, with important application scenarios. Using a quadrotor as an example, in this paper, we mainly researched the tracking-related modeling and application verification of agile targets. We propose a robust and efficient UAV path planning approach for tracking agile targets aggressively and safely. This approach comprehensively takes into account the historical observations of the tracking target and the surrounding environment of the location. It reliably predicts a short time horizon position of the moving target with respect to the dynamic constraints. Firstly, via leveraging the Bernstein basis polynomial and combining obstacle distribution information around the target, the prediction module evaluated the future movement of the target, presuming that it endeavored to stay away from the obstacles. Then, a target-informed dynamic searching method was embraced as the front end, which heuristically searched for a safe tracking trajectory. Secondly, the back-end optimizer ameliorated it into a spatial–temporal optimal and collision-free trajectory. Finally, the tracking trajectory planner generated smooth, dynamically feasible, and collision-free polynomial trajectories in milliseconds, which is consequently reasonable for online target tracking with a restricted detecting range. Statistical analysis, simulation, and benchmark comparisons show that the proposed method has at least 40% superior accuracy compared to the leading methods in the field and advanced capabilities for tracking agile targets.
Funder
Open Fund of Key Laboratory of Civil Aircraft Airworthiness Technology
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献