Abstract
In the present study, a comparison of two widely used optimization approaches for fused deposition modeling (FDM), that is, Taguchi method in contrast with response surface method (RSM), was investigated. Four operating parameters, namely extrusion temperature, layer thickness, raster width, print speed, and their interaction terms, were identified as control variables with three levels, while tensile strength and compressive strength were selected responses. L27 orthogonal array and face-centered central composite design (FCCCD) were used for the experimental approach for Taguchi and RSM, respectively. The signal-to-noise (S/N) ratio and analysis of variance (ANOVA) were employed to find the optimal FDM parameter combination as well as the main factor that affect the performance of the PLA samples. Based on experimental results, it was observed that conclusions about significant ranking of parameters on FDM process from these two methods were different. However, both the Taguchi method and RSM succeed in predicting better results compared with the original groups. In addition, the optimum combinations for tensile strength and compressive strength obtained from the RSM were 2.11% and 8.15% higher than Taguchi method, respectively.
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献