Optimising the FDM additive manufacturing process to achieve maximum tensile strength: a state-of-the-art review

Author:

Gordelier Tessa Jane,Thies Philipp Rudolf,Turner Louis,Johanning Lars

Abstract

Purpose Additive manufacturing or “3D printing” is a rapidly expanding sector and is moving from a prototyping service to a manufacturing service in its own right. With a significant increase in sales, fused deposition modelling (FDM) printers are now the most prevalent 3D printer on the market. The increase in commercial manufacturing necessitates an improved understanding of how to optimise the FDM printing process for various product mechanical properties. This paper aims to identify optimum print parameters for the FDM process to achieve maximum tensile strength through a review of recent studies in this field. Design/methodology/approach The effect of the governing printing parameters on the tensile strength of printed samples will be considered, including material selection, print orientation, raster angle, air gap and layer height. Findings The key findings include material recommendations, such as the use of emerging print materials like polyether-ether-ketone (PEEK), to produce samples with tensile strength over 200 per cent that of conventional materials such as acrylonitrile butadiene styrene (ABS). Amongst other parameters, it is shown that printing in the “upright” orientation should be avoided (samples can be up to 50 per cent weaker in this orientation) and air gap and raster width should be concurrently optimised to ensure good “inter-raster” bonding. The optimal choice of raster angle depends on print material; in ABS for example, selecting a 0° raster angle over a 90° angle can increase tensile strength by up to 100 per cent. Originality/value The paper conclusions provide researchers and practitioners with an up-to-date, single point reference, highlighting a series of robust recommendations to optimise the tensile strength of FDM-printed samples. Improving the mechanical performance of FDM-printed samples will support the continued growth of this technology as a viable production technique.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference59 articles.

1. Effects of part build orientations on fatigue behaviour of FDM-processed PLA material;Progress in Additive Manufacturing,2016

2. Anisotropic material properties of fused deposition modeling ABS;Rapid Prototyping Journal,2002

3. Modeling of bond formation between polymer filaments in the fused deposition modeling process;Journal of Manufacturing Processes,2004

Cited by 104 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3