A State-Compensated Deep Deterministic Policy Gradient Algorithm for UAV Trajectory Tracking

Author:

Wu JiyingORCID,Yang Zhong,Liao Luwei,He Naifeng,Wang Zhiyong,Wang Can

Abstract

The unmanned aerial vehicle (UAV) trajectory tracking control algorithm based on deep reinforcement learning is generally inefficient for training in an unknown environment, and the convergence is unstable. Aiming at this situation, a Markov decision process (MDP) model for UAV trajectory tracking is established, and a state-compensated deep deterministic policy gradient (CDDPG) algorithm is proposed. An additional neural network (C-Net) whose input is compensation state and output is compensation action is added to the network model of a deep deterministic policy gradient (DDPG) algorithm to assist in network exploration training. It combined the action output of the DDPG network with compensated output of the C-Net as the output action to interact with the environment, enabling the UAV to rapidly track dynamic targets in the most accurate continuous and smooth way possible. In addition, random noise is added on the basis of the generated behavior to realize a certain range of exploration and make the action value estimation more accurate. The OpenAI Gym tool is used to verify the proposed method, and the simulation results show that: (1) The proposed method can significantly improve the training efficiency by adding a compensation network and effectively improve the accuracy and convergence stability; (2) Under the same computer configuration, the computational cost of the proposed algorithm is basically the same as that of the QAC algorithm (Actor-critic algorithm based on behavioral value Q) and the DDPG algorithm; (3) During the training process, with the same tracking accuracy, the learning efficiency is about 70% higher than that of QAC and DDPG; (4) During the simulation tracking experiment, under the same training time, the tracking error of the proposed method after stabilization is about 50% lower than that of QAC and DDPG.

Funder

Guizhou Provincial Science and Technology Projects

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Reference31 articles.

1. Learning agile and dynamic motor skills for legged robots

2. Feedback control for cassie with deep reinforcement learning;Xie;Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),2018

3. Decentralized PID neural network control for a quadrotor helicopter subjected to wind disturbance

4. Design of UAV UAV control system based on deep learning;Xu;Comput. Meas. Control,2020

5. Human-level control through deep reinforcement learning

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3