Transpiration Sensitivity to Drought in Quercus wutaishansea Mary Forests on Shady and Sunny Slopes in the Liupan Mountains, Northwestern China

Author:

Liu Bingbing,Yu Pengtao,Zhang Xue,Li Jiamei,Yu Yipeng,Wan Yanfang,Wang Yanhui,Wang Xiao,Liu ZebinORCID,Pan Lei,Xu Lihong

Abstract

Forests in water source areas are important factors for water supply security, soil, and water conservation, and their water consumption from transpiration is strongly affected by site conditions, including the slope aspect. However, the lack of research on how the slope aspect interferes with the response of stand transpiration to drought has hindered researchers from developing climate-resilient forest–water coordinated, sustainable development plans for different stand conditions. This study was conducted on Quercus wutaishansea forests in the southern part of Liupan Mountain in northwest China, and two sample plots were built on sunny and shady slopes. The responses of stand transpiration to various soil moisture and meteorological conditions on different slope orientations were analyzed. The results showed better-growing stands on shady slopes transpired more and consumed more soil moisture than those on sunny slopes. The soil moisture on shady slopes decreased rapidly below the threshold level during the drought, leading to a limitation of stand transpiration; however, its transpiration recovered rapidly after the drought. In contrast, stand transpiration on sunny slopes was not affected by this drought and maintained its pre-drought rate. Our results suggested that stands with higher water demand on shady slopes were more susceptible to drought when it occurred. This indicated that in the case of frequent droughts, the vegetation should be managed according to the vegetation-carrying capacities resulting from different site conditions.

Funder

Central Public-Interest Scientific Institution Basal Research Fund of Chinese Academy of Forestry

National Natural Science Foundation of China

National Key Research & Development Program of China

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3