Depth-Wise Separable Convolution Attention Module for Garbage Image Classification

Author:

Liu Fucong,Xu Hui,Qi Miao,Liu Di,Wang Jianzhong,Kong Jun

Abstract

Currently, how to deal with the massive garbage produced by various human activities is a hot topic all around the world. In this paper, a preliminary and essential step is to classify the garbage into different categories. However, the mainstream waste classification mode relies heavily on manual work, which consumes a lot of labor and is very inefficient. With the rapid development of deep learning, convolutional neural networks (CNN) have been successfully applied to various application fields. Therefore, some researchers have directly adopted CNNs to classify garbage through their images. However, compared with other images, the garbage images have their own characteristics (such as inter-class similarity, intra-class variance and complex background). Thus, neglecting these characteristics would impair the classification accuracy of CNN. To overcome the limitations of existing garbage image classification methods, a Depth-wise Separable Convolution Attention Module (DSCAM) is proposed in this paper. In DSCAM, the inherent relationships of channels and spatial positions in garbage image features are captured by two attention modules with depth-wise separable convolutions, so that our method could only focus on important information and ignore the interference. Moreover, we also adopt a residual network as the backbone of DSCAM to enhance its discriminative ability. We conduct the experiments on five garbage datasets. The experimental results demonstrate that the proposed method could effectively classify the garbage images and that it outperforms some classical methods.

Funder

National Natural Science Foundation of China

Jilin Provincial Science and Technology Department

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference40 articles.

1. What a Waste: A Global Review of Solid Waste Management;Daniel,2012

2. A comparison of municipal solid waste management in Berlin and Singapore

3. Current situation of marine microplastics pollution and prevention proposals in China;Wang;China Environ. Sci.,2019

4. Study on characteristics of electric dust removal fly ash and bag fly ash in circulating fluidized bed waste incineration system;Li;Proc. CSEE,2019

5. Thermogravimetric analysis as express tool for quality assessment of refuse derived fuels used for pyro-gasification

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3