Enhancing trash classification in smart cities using federated deep learning

Author:

Ahmed Khan Haroon,Naqvi Syed Saud,Alharbi Abeer A. K.,Alotaibi Salihah,Alkhathami Mohammed

Abstract

AbstractEfficient Waste management plays a crucial role to ensure clean and green environment in the smart cities. This study investigates the critical role of efficient trash classification in achieving sustainable solid waste management within smart city environments. We conduct a comparative analysis of various trash classification methods utilizing deep learning models built on convolutional neural networks (CNNs). Leveraging the PyTorch open-source framework and the TrashBox dataset, we perform experiments involving ten unique deep neural network models. Our approach aims to maximize training accuracy. Through extensive experimentation, we observe the consistent superiority of the ResNext-101 model compared to others, achieving exceptional training, validation, and test accuracies. These findings illuminate the potential of CNN-based techniques in significantly advancing trash classification for optimized solid waste management within smart city initiatives. Lastly, this study presents a distributed framework based on federated learning that can be used to optimize the performance of a combination of CNN models for trash detection.

Funder

The Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3