Abstract
Image processing methods often introduce distortions, which affect the way an image is subjectively perceived by a human observer. To avoid inconvenient subjective tests in cases in which reference images are not available, it is desirable to develop an automatic no-reference image quality assessment (NR-IQA) technique. In this paper, a novel NR-IQA technique is proposed in which the distributions of local gradient orientations in image regions of different sizes are used to characterize an image. To evaluate the objective quality of an image, its luminance and chrominance channels are processed, as well as their high-order derivatives. Finally, statistics of used perceptual features are mapped to subjective scores by the support vector regression (SVR) technique. The extensive experimental evaluation on six popular IQA benchmark datasets reveals that the proposed technique is highly correlated with subjective scores and outperforms related state-of-the-art hand-crafted and deep learning approaches.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献