No-Reference Image Quality Assessment Using the Statistics of Global and Local Image Features

Author:

Varga Domonkos1ORCID

Affiliation:

1. Ronin Institute, Montclair, NJ 07043, USA

Abstract

Methods of image quality assessment are widely used for ranking computer vision algorithms or controlling the perceptual quality of video and streaming applications. The ever-increasing number of digital images has encouraged the research in this field at an accelerated pace in recent decades. After the appearance of convolutional neural networks, many researchers have paid attention to different deep architectures to devise no-reference image quality assessment algorithms. However, many systems still rely on handcrafted features to ensure interpretability and restrict the consumption of resources. In this study, our efforts are focused on creating a quality-aware feature vector containing information about both global and local image features. Specifically, the research results of visual physiology indicate that the human visual system first quickly and automatically creates a global perception before gradually focusing on certain local areas to judge the quality of an image. Specifically, a broad spectrum of statistics extracted from global and local image features is utilized to represent the quality-aware aspects of a digital image from various points of view. The experimental results demonstrate that our method’s predicted quality ratings relate strongly with the subjective quality ratings. In particular, the introduced algorithm was compared with 16 other well-known advanced methods and outperformed them by a large margin on 9 accepted benchmark datasets in the literature: CLIVE, KonIQ-10k, SPAQ, BIQ2021, TID2008, TID2013, MDID, KADID-10k, and GFIQA-20k, which are considered de facto standards and generally accepted in image quality assessment.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3