Threshold-Based BRISQUE-Assisted Deep Learning for Enhancing Crack Detection in Concrete Structures

Author:

Pennada Sanjeetha1ORCID,Perry Marcus1ORCID,McAlorum Jack1ORCID,Dow Hamish1ORCID,Dobie Gordon2ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, University of Strathclyde, 75 Montrose St., Glasgow G1 1XJ, UK

2. Department of Electronic & Electrical Engineering, University of Strathclyde, 204 George St., Glasgow G1 1XW, UK

Abstract

Automated visual inspection has made significant advancements in the detection of cracks on the surfaces of concrete structures. However, low-quality images significantly affect the classification performance of convolutional neural networks (CNNs). Therefore, it is essential to evaluate the suitability of image datasets used in deep learning models, like Visual Geometry Group 16 (VGG16), for accurate crack detection. This study explores the sensitivity of the BRISQUE method to different types of image degradations, such as Gaussian noise and Gaussian blur. By evaluating the performance of the VGG16 model on these degraded datasets with varying levels of noise and blur, a correlation is established between image degradation and BRISQUE scores. The results demonstrate that images with lower BRISQUE scores achieve higher accuracy, F1 score, and Matthew’s correlation coefficient (MCC) in crack classification. The study proposes the implementation of a BRISQUE score threshold (BT) to optimise training and testing times, leading to reduced computational costs. These findings have significant implications for enhancing accuracy and reliability in automated visual inspection systems for crack detection and structural health monitoring (SHM).

Funder

Scottish Funding Council

University of Strathclyde’s Advanced Nuclear Research Centre

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the efficiency of the BRISQUE metric for assessing linearly blurred images when deconvoluted with 3x3 convolution matrices;Third International Conference on Optics, Computer Applications, and Materials Science (CMSD-III 2023);2024-02-20

2. Data cleaning method based on decision tree-regression model;Proceedings of the 2023 4th International Conference on Big Data Economy and Information Management;2023-12-08

3. Automated Concrete Crack Inspection With Directional Lighting Platform;IEEE Sensors Letters;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3