Data-Driven Model Predictive Control for Uncalibrated Visual Servoing

Author:

Han Tianjiao1ORCID,Zhu Hongyu1,Yu Dan1ORCID

Affiliation:

1. College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Abstract

This paper addresses the image-based visual servoing (IBVS) control problem with an uncalibrated camera, unknown dynamics, and constraints. A novel data-driven uncalibrated IBVS (UIBVS) strategy is proposed, incorporated with the Koopman-based model predictive control (KMPC) algorithm and the adaptive robust Kalman filter (ARKF). First, to alleviate the need for calibration of the camera’s intrinsic and extrinsic parameters, the ARKF with an adaptive factor is utilized to estimate the image Jacobian matrix online, thereby eliminating the laborious camera calibration procedures and improving robustness against camera disturbances. Then, a data-driven MPC strategy is proposed, wherein the unknown nonlinear dynamic model is learned using the Koopman operator theory, resulting in a linear Koopman prediction model. Only input–output data are used to construct the prediction model, and hence, the proposed approach is robust against model uncertainties. Furthermore, with a symmetric quadratic cost function, the proposed approach solves the quadratic programming problem online, and visibility constraints as well as joint torque constraints are taken into account. As a result, the proposed KMPC scheme can be implemented in real time, and the UIBVS performance degradation which arises from the control torque constraints can be avoided. Simulations and comparisons for a 2-DOF robotic manipulator demonstrate the feasibility of the proposed approach. Simulation results further validate that the computation time of the proposed approach is comparable to the one of kinematic-based methods.

Funder

Nanjing University of Aeronautics and Astronautics

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3