Fractured Elbow Classification Using Hand-Crafted and Deep Feature Fusion and Selection Based on Whale Optimization Approach

Author:

Malik Sarib,Amin JaveriaORCID,Sharif MuhammadORCID,Yasmin Mussarat,Kadry SeifedineORCID,Anjum SherazORCID

Abstract

The fracture of the elbow is common in human beings. The complex structure of the elbow, including its irregular shape, border, etc., makes it difficult to correctly recognize elbow fractures. To address such challenges, a method is proposed in this work that consists of two phases. In Phase I, pre-processing is performed, in which images are converted into RGB. In Phase II, pre-trained convolutional models Darknet-53 and Xception are used for deep feature extraction. The handcrafted features, such as the histogram of oriented gradient (HOG) and local binary pattern (LBP), are also extracted from the input images. A principal component analysis (PCA) is used for best feature selection and is serially merged into a single-feature vector having the length of N×2125. Furthermore, informative features N×1049 are selected out of N×2125 features using the whale optimization approach (WOA) and supplied to SVM, KNN, and wide neural network (WNN) classifiers. The proposed method’s performance is evaluated on 16,984 elbow X-ray radiographs that are taken from the publicly available musculoskeletal radiology (MURA) dataset. The proposed technique provides 97.1% accuracy and a kappa score of 0.943% for the classification of elbow fractures. The obtained results are compared to the most recently published approaches on the same benchmark datasets.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3