Regression Analysis of Multivariate Interval-Censored Failure Time Data under Transformation Model with Informative Censoring

Author:

Yu MengzhuORCID,Du MingyueORCID

Abstract

We consider a regression analysis of multivariate interval-censored failure time data where the censoring may be informative. To address this, an approximated maximum likelihood estimation approach is proposed under a general class of semiparametric transformation models, and in the method, the frailty approach is employed to characterize the informative interval censoring. For the implementation of the proposed method, we develop a novel EM algorithm and show that the resulting estimators of the regression parameters are consistent and asymptotically normal. To evaluate the empirical performance of the proposed estimation procedure, we conduct a simulation study, and the results indicate that it performs well for the situations considered. In addition, we apply the proposed approach to a set of real data arising from an AIDS study.

Funder

National Natural Science Foundation of China Grant

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference33 articles.

1. A Proportional Hazards Model for Interval-Censored Failure Time Data

2. Statistical Analysis of Interval-Censored Failure Time Data;Sun,2006

3. The Statistival Analysis of Failure Time Data;Kalbfleisch,2002

4. Regression analysis of case II interval censored failure time data with the additive hazards model;Wang;Stat. Sin.,2010

5. Statistical analysis of current status data with informative observation times

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3