Partially Linear Additive Hazards Regression for Bivariate Interval-Censored Data

Author:

Zhang Ximeng1ORCID,Zhao Shishun1,Hu Tao2ORCID,Sun Jianguo3

Affiliation:

1. Center for Applied Statistical Research, College of Mathematics, Jilin University, Changchun 130012, China

2. School of Mathematical Sciences, Capital Normal University, Beijing 100048, China

3. Department of Statistics, University of Missouri, Columbia, MO 65211, USA

Abstract

In this paper, we discuss regression analysis of bivariate interval-censored failure time data that often occur in biomedical and epidemiological studies. To solve this problem, we propose a kind of general and flexible copula-based semiparametric partly linear additive hazards models that can allow for both time-dependent covariates and possible nonlinear effects. For inference, a sieve maximum likelihood estimation approach based on Bernstein polynomials is proposed to estimate the baseline hazard functions and nonlinear covariate effects. The resulting estimators of regression parameters are shown to be consistent, asymptotically efficient and normal. A simulation study is conducted to assess the finite-sample performance of this method and the results show that it is effective in practice. Moreover, an illustration is provided.

Funder

Beijing Natural Science Foundation

Technology Developing Plan of Jilin Province

National Nature Science Foundation of China

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Reference38 articles.

1. Sun, J. (2006). The Statistical Analysis of Interval-Censored Failure Time Data, Springer.

2. Additive hazards regression with current status data;Lin;Biometrika,1998

3. Efficient estimation in additive hazards regression with current status data;Martinussen;Biometrika,2002

4. Estimation of the additive hazards model with linear inequality restrictions based on current status data;Feng;Commun. Stat.-Theory Methods,2022

5. A new method for regression analysis of interval-censored data with the additive hazards model;Wang;J. Korean Stat. Soc.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3