Fault-Tolerant Integrated Guidance and Control Design for Hypersonic Vehicle Based on PPO

Author:

Song JiaORCID,Luo Yuxie,Zhao Mingfei,Hu Yunlong,Zhang Yanxue

Abstract

Aiming at the problem of the terminal guidance phase of hypersonic vehicles (HSV) under fault condition, and considering the existence of various uncertain parameters and actuator faults in the control system, a fault-tolerant integrated guidance and control design of a hypersonic vehicle based on the proximal policy optimization algorithm (PPO) is proposed. First, in view of the problem that the separate guidance and control loop design cannot make full use of the coupling relationship between the two, the relationship between the guidance loop and the control loop is considered and an integrated guidance and control system of HSV is established. Then, the integrated guidance and control problem is converted into a reinforcement learning model, the action space, state observation space, and reward function of the PPO agent are designed, and the network is initialized and designed. Simulations verify the feasibility of the proposed PPO-based IGC system.

Funder

Key Laboratory of Hunan Province for Control Technology of 228 Distributed Electric Propulsion Air Vehicle

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3