Author:
Lee Kang Hyun,Chun Youngsang,Jang Ye Won,Lee Soo Kweon,Kim Hyeong Ryeol,Lee Ju Hun,Kim Seung Wook,Park Chulhwan,Yoo Hah Young
Abstract
Carbon-neutral and eco-friendly biomass-based processes are recognized as a frontier technology for sustainable development. In particular, biopolymers are expected to replace petrochemical-based films that are widely used in food packaging. In this study, the fabrication conditions of functional (antioxidant and antibacterial) bioelastomers were investigated using by-products from the juice processing (experimental group) and freeze-dried whole fruit (control group). Bioelastomer was fabricated by a casting method in which polydimethylsiloxane (PDMS) was mixed with 25 or 50 wt% aronia powder (juice processing by-products and freeze-dried whole fruit). The mechanical properties of the bioelastomers were measured based on tensile strength and Young’s modulus. When the mixture contained 50 wt% aronia powder, the strength was not appropriate for the intended purpose. Next, the surface and chemical properties of the bioelastomer were analyzed; the addition of aronia powder did not significantly change these properties when compared to PDMS film (no aronia powder). However, the addition of aronia powder had a significant effect on antioxidant and antimicrobial activities and showed higher activity with 50 wt% than with 25 wt%. In particular, bioelastomers fabricated from aronia juice processing by-products exhibited approximately 1.4-fold lower and 1.5-fold higher antioxidant and antimicrobial activities, respectively, than the control group (bioelastomers fabricated from freeze-dried aronia powder).
Subject
Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献