Heterogeneous Deterioration Process and Risk of Deficiencies of Aging Bridges for Transportation Asset Management

Author:

Han DaeseokORCID

Abstract

The government of the Republic of Korea has set the minimum service level of bridges as Grade B and has defined the risk management level as higher than 95 percent. To achieve this goal, it is necessary to understand the deterioration process and risk of deficiencies for bridges, and these characteristics should be reflected in the management strategy and budget investment plan. To this end, this study developed deterioration models according to the bridge ages to define heterogeneous deterioration characteristics of aging bridges. To build the deterioration models, this study collected and processed bridge diagnosis data for 10 years, and a Bayesian Markov mixed hazard model was introduced. Analysis results showed that the life expectancy of the aging bridges over 30 years was remarkably short, 1/3 of the average life expectancy of the network, and the probability of failure was seven times higher than that of new bridges within 10 years after completion. In addition, the optimal maintenance demand that satisfies a risk management level of 95 percent illustrated that 44.7 percent of the bridges at Grade C should be continuously maintained annually. The results showed that it is urgent to prepare a preemptive response strategy and budget-securing plan for aging bridges, which will rapidly increase to 39% in the next 10 years and 76% in 20 years.

Funder

Ministry of sciency and ICT

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference38 articles.

1. ISO 55000:2014 Asset Management-Overview, Principles and Terminology,2014

2. ISO 55001:2014 Asset Management-Management Systems-Requirements,2014

3. International Infrastructure Management Manual (International Edition 2015,2015

4. Standard Classification for Bridge Elements–Uniformat II (E2103/E2103M-19),2019

5. 2021 Infrastructure Report Card for America’s Infrastructure,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3