Abstract
Pyrrolizidine alkaloids (PAs) are produced by plants as secondary compounds that are the most widely distributed natural toxins. There have been many cases of human toxicity caused by consumption of toxic plant species, as herbal teas and grain or grain products contaminated with PA-containing seeds have been reported. Companies that produce dried spices and tea leaves should examine the PA level in their products. For the first time in the literature, a simple and inexpensive electrochemical assay based on a single-use sensor was introduced for quantitative determination of senecionine (SEN) in the most frequently contaminated food sources. SEN was immobilized on a pencil graphite electrode surface by the passive adsorption technique. Differential pulse voltammetry (DPV) was used to evaluate the oxidation signal of SEN, which was observed to be around +0.95 V. The oxidation signal was specific to the SEN in the sample, and the current value was proportional to its concentration. The selectivity of our assay was also tested in the presence of other similar PAs such as intermedine, lycopsamine, and heliotrine. The detection limit is calculated by developed assay and found to be 5.45 µg/mL, which is an acceptable concentration value of SEN occurring at toxic levels for consumers. As an application of the developed sensor in food products, the electrochemical detection of SEN was successfully performed in flour and herbal tea products.
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Reference34 articles.
1. Chemical ecology of pyrrolizidine alkaloids
2. Repeated Evolution of the Pyrrolizidine Alkaloid–Mediated Defense System in Separate Angiosperm Lineages w⃞
3. ChemInform Abstract: Medicinal Plants in Europe Containing Pyrrolizidine Alkaloids
4. Rośliny Lecznicze w Fitoterapii,1994
5. EFSA opinion of the scientific panel on contaminants in the food chain on a request from the european commission related to pyrrolizidine alkaloids as undesirable substances in animal feed;EFSA J.,2007
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献