Abstract
Keel bone damage (KBD) can be found in all commercial laying hen flocks with a wide range of 23% to 69% of hens/flock found to be affected in this study. As KBD may be linked with chronic pain and a decrease in mobility, it is a serious welfare problem. An automatic assessment system at the slaughter line could support the detection of KBD and would have the advantage of being standardized and fast scoring including high sample sizes. A 2MP stereo camera combined with an IDS imaging color camera was used for the automatic assessment. A trained human assessor visually scored KBD in defeathered hens during the slaughter process and compared results with further human assessors and automatic recording. In a first step, an algorithm was developed on the basis of assessments of keel status of 2287 hens of different genetics with varying degrees of KBD. In two optimization steps, performance data were calculated, and flock prevalences were determined, which were compared between the assessor and the automatic system. The proposed technique finally reached a sensitivity of 0.95, specificity of 0.77, accuracy of 0.86 and precision of 0.81. In the last optimization step, the automatic system scored on average about 10.5% points lower KBD prevalences than the human assessor. However, a proposed change of scoring system (setting the limit for KBD at 0.5 cm deviation from the straight line) would lower this deviation. We conclude that the developed automatic scoring technique is a reliable and potentially valuable tool for the assessment of KBD.
Funder
Bundesministerium für Ernährung und Landwirtschaft
Subject
General Veterinary,Animal Science and Zoology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献