Projections of Global Drought and Their Climate Drivers Using CMIP6 Global Climate Models

Author:

Xu Feng1ORCID,Bento Virgílio A.2,Qu Yanping3,Wang Qianfeng14ORCID

Affiliation:

1. Fujian Provincial Key Laboratory of Remote Sensing of Soil Erosion and Disaster Protection, College of Environmental & Safety Engineering, Fuzhou University, Fuzhou 350116, China

2. Instituto Dom Luiz, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal

3. China Institute of Water Resources & Hydropower Research, Research Center on Flood & Drought Disaster Reduction, Beijing 100038, China

4. Key Laboratory of Spatial Data Mining & Information Sharing, Ministry of Education of China, Fuzhou 350116, China

Abstract

Due to the complex coupling between drought and climatic factors, the future drought conditions that might occur under climate change is still unclear. In this research, we used the daily SPEI algorithm to project global drought conditions during 2016–2100 based on the data from phase 6 of the Coupled Model Intercomparison Project (CMIP6). We also employed partial correlation analysis to explore the influence of climate factors on drought. Our analyses show the following: (1) Drought conditions projected by CMIP6 under different models are similar; however, they can vary widely across regions. (2) According to the MK trend test, drought conditions in most regions around the world are expected to become increasingly severe in the future, and this trend is significant. (3) Based on the results of the partial correlation analysis results, it is understood that drought events in most regions worldwide are primarily driven by precipitation. This study contributes to the discussion of projecting future drought conditions and expands the application by utilizing the state−of−the−art CMIP6 climate models and scenarios.Highlight

Funder

the National Key Research and Development Program

the National Natural Science Foundation of China

the Ministry of Water Resources’ flood and drought disaster prevention strategy research talent innovation team project

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3