Quality Quantification and Control via Novel Self-Growing Process-Quality Model of Parts Fabricated by LPBF Process

Author:

Xiao Xinyi,Chu Beibei,Zhang Zhengyan

Abstract

Laser Powder Bed Fusion (LPBF) presents a more extensive allowable design complexity and manufacturability compared with the traditional manufacturing processes by depositing materials in a layer-wised manner. However, the process variability in the LPBF process induces quality uncertainty and inconsistency. Specifically, the mechanical properties, e.g., tensile strength, are hard to be predicted and controlled in the LPBF process. Much research has recently been reported exploring the qualitative influence of single/two process parameters on tensile strength. In fact, mechanical properties are comprehensively affected by multiple correlated process parameters with unclear and complex interactions. Thus, the study on the quantitative process-quality model of the metal LPBF process is urgently needed to provide an enough-strength component via the metal LPBF process. Recent progress in artificial intelligence (AI) and machine learning (ML) provides new insight into quality prediction in terms of computational accuracy and speed. However, the predictive model quality through the traditional AL/ML is heavily determined by the training data size, and the experimental analysis can be expansive on LPBF. This paper explores the comprehensive effect of the tensile strength of 316L stainless-steel parts on LPBF and proposes a valid quantitative predictive model through a novel self-growing machine-learning framework. The self-growing framework can autonomously expand and classify the growing dataset to provide a high-accuracy prediction with fewer input data. To verify this predictive model of tensile strength, specimens manufactured by the LPBF process with different group process parameters (laser power, scanning speed, and hatch spacing) are collected. The experimental results validate the predicted tensile strengths within a less than 3% deviation.

Funder

Central government to guide local scientific and technological development of Hebei Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3