Integrated Approach for Landslide Risk Assessment Using Geoinformation Tools and Field Data in Hindukush Mountain Ranges, Northern Pakistan

Author:

Shah Nisar Ali12,Shafique Muhammad12,Ishfaq Muhammad12,Faisal Kamil3,Van der Meijde Mark4ORCID

Affiliation:

1. GIS and Space Application in Geosciences (GSAG) Lab, National Center of GIS and Space Application (NCGSA), Islamabad 44000, Pakistan

2. National Centre of Excellence in Geology, University of Peshawar, Peshawar 25130, Pakistan

3. Department of Geomatics, Faculty of Architecture and Planning, King Abdulaziz University, Jeddah 21589, Saudi Arabia

4. Department of Earth System Analysis, University of Twente, 7500 AE Enschede, The Netherlands

Abstract

Landslides are one of the most recurring and damaging natural hazards worldwide, with rising impacts on communities, infrastructure, and the environment. Landslide hazard, vulnerability, and risk assessments are critical for landslide mitigation, land use and developmental planning. They are, however, often lacking in complex and data-poor regions. This study proposes an integrated approach to evaluate landslide hazard, vulnerability, and risk using a range of freely available geospatial data and semi-quantitative techniques for one of the most landslide-prone areas in the Hindukush mountain ranges of northern Pakistan. Very high-resolution satellite images and their spectral characteristics are utilized to develop a comprehensive landslide inventory and predisposing factors using bi-variate models to develop a landslide susceptibility map. This is subsequently integrated with landslide-triggering factors to derive a Landslide Hazard Index map. A geospatial database of the element-at-risk data is developed from the acquired remote sensing data and extensive field surveys. It contains the building’s footprints, accompanied by typological data, road network, population, and land cover. Subsequently, it is analyzed using a spatial multi-criteria evaluation technique for vulnerability assessment and further applied in a semi-quantitative technique for risk assessment in relative risk classes. The landslide risk assessment map is classified into five classes, i.e., very low (18%), low (39.4%), moderate (26.3%), high (13.3%), and very high (3%). The developed landslide risk index map shall assist in highlighting the landslide risk hotspots and their subsequent mitigation and risk reduction.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3