Evaluation of Clustering Algorithms on HPC Platforms

Author:

Cebrian Juan M.ORCID,Imbernón BaldomeroORCID,Soto JesúsORCID,Cecilia José M.ORCID

Abstract

Clustering algorithms are one of the most widely used kernels to generate knowledge from large datasets. These algorithms group a set of data elements (i.e., images, points, patterns, etc.) into clusters to identify patterns or common features of a sample. However, these algorithms are very computationally expensive as they often involve the computation of expensive fitness functions that must be evaluated for all points in the dataset. This computational cost is even higher for fuzzy methods, where each data point may belong to more than one cluster. In this paper, we evaluate different parallelisation strategies on different heterogeneous platforms for fuzzy clustering algorithms typically used in the state-of-the-art such as the Fuzzy C-means (FCM), the Gustafson–Kessel FCM (GK-FCM) and the Fuzzy Minimals (FM). The experimental evaluation includes performance and energy trade-offs. Our results show that depending on the computational pattern of each algorithm, their mathematical foundation and the amount of data to be processed, each algorithm performs better on a different platform.

Funder

Ministerio de Ciencia e Innovación

Conselleria d'Educació, Investigació, Cultura i Esport

Fundación Séneca

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference55 articles.

1. Digital Transformation, Cyber Security and Resilience of Modern Societies;Tagarev,2021

2. A survey on platforms for big data analytics

3. Intel Corporationhttps://www.intel.es/content/www/es/es/architecture-and-technology/64-ia-32-architectures-software-developer-vol-2a-manual.html

4. ARM NEON Technologyhttps://developer.arm.com/architectures/instruction-sets/simd-isas/neon

5. The ARM Scalable Vector Extension

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3