A Study on Facial Expression Change Detection Using Machine Learning Methods with Feature Selection Technique

Author:

Sung Sang-Ha,Kim SangjinORCID,Park Byung-Kwon,Kang Do-YoungORCID,Sul SunhaeORCID,Jeong Jaehyun,Kim Sung-Phil

Abstract

Along with the fourth industrial revolution, research in the biomedical engineering field is being actively conducted. Among these research fields, the brain–computer interface (BCI) research, which studies the direct interaction between the brain and external devices, is in the spotlight. However, in the case of electroencephalograph (EEG) data measured through BCI, there are a huge number of features, which can lead to many difficulties in analysis because of complex relationships between features. For this reason, research on BCIs using EEG data is often insufficient. Therefore, in this study, we develop the methodology for selecting features for a specific type of BCI that predicts whether a person correctly detects facial expression changes or not by classifying EEG-based features. We also investigate whether specific EEG features affect expression change detection. Various feature selection methods were used to check the influence of each feature on expression change detection, and the best combination was selected using several machine learning classification techniques. As a best result of the classification accuracy, 71% of accuracy was obtained with XGBoost using 52 features. EEG topography was confirmed using the selected major features, showing that the detection of changes in facial expression largely engages brain activity in the frontal regions.

Funder

Dong-A University

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3