Entropy-Aided Meshing-Order Modulation Analysis for Wind Turbine Planetary Gear Weak Fault Detection under Variable Rotational Speed

Author:

Zhi Shaodan1ORCID,Wu Hengshan1ORCID,Shen Haikuo1ORCID,Wang Tianyang2ORCID,Fu Hongfei1

Affiliation:

1. Electronic and Control Engineering, School of Mechanical, Beijing Jiaotong University, Beijing 100091, China

2. Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China

Abstract

As one of the most vital energy conversation systems, the safe operation of wind turbines is very important; however, weak fault and time-varying speed may challenge the conventional monitoring strategies. Thus, an entropy-aided meshing-order modulation method is proposed for detecting the optimal frequency band, which contains the weak fault-related information. Specifically, the variable rotational frequency trend is first identified and extracted based on the time–frequency representation of the raw signal by constructing a novel scaling-basis local reassigning chirplet transform (SLRCT). A new entropy-aided meshing-order modulation (EMOM) indicator is then constructed to locate the most sensitive modulation frequency area according to the extracted fine speed trend with the help of order tracking technique. Finally, the raw vibration signal is bandpass filtered via the corresponding optimal frequency band with the highest EMOM indicator. The order components resulting from the weak fault can be highlighted to accomplish weak fault detection. The effectiveness of the proposed EMOM analysis-based method has been tested using the experimental data of three different gear fault types of different fault levels from a planetary test rig.

Funder

National Natural Science Foundation of China (NSFC) Projects of International Cooperation and Exchanges

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3