Intelligent Fault Diagnosis Method for Rotating Machinery Based on Recurrence Binary Plot and DSD-CNN

Author:

Shi Yuxin1ORCID,Wang Hongwei1ORCID,Sun Wenlei1ORCID,Bai Ruoyang1ORCID

Affiliation:

1. School of Mechanical Engineering, Xinjiang University, Urumqi 830046, China

Abstract

To tackle the issue of the traditional intelligent diagnostic algorithm’s insufficient utilization of correlation characteristics within the time series of fault signals and to meet the challenges of accuracy and computational complexity in rotating machinery fault diagnosis, a novel approach based on a recurrence binary plot (RBP) and a lightweight, deep, separable, dilated convolutional neural network (DSD-CNN) is proposed. Firstly, a recursive encoding method is used to convert the fault vibration signals of rotating machinery into two-dimensional texture images, extracting feature information from the internal structure of the fault signals as the input for the model. Subsequently, leveraging the excellent feature extraction capabilities of a lightweight convolutional neural network embedded with attention modules, the fault diagnosis of rotating machinery is carried out. The experimental results using different datasets demonstrate that the proposed model achieves excellent diagnostic accuracy and computational efficiency. Additionally, compared with other representative fault diagnosis methods, this model shows better anti-noise performance under different noise test data, and it provides a reliable and efficient reference solution for rotating machinery fault-classification tasks.

Funder

Natural Science Foundation of Xinjiang Uygur Autonomous Region

Key Research and Development Program of Xinjiang Uygur Autonomous Region

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3