Establishing a Reliable Assessment of the Green View Index Based on Image Classification Techniques, Estimation, and a Hypothesis Testing Route

Author:

Liu Yiming12,Pan Xiangxiang23ORCID,Liu Qing34,Li Guicai23

Affiliation:

1. Guangdong Academy of Social Sciences, Guangzhou 510635, China

2. Shenzhen Graduate School, Peking University, Shenzhen 518055, China

3. Laboratory for Urban Future, Peking University, Shenzhen 518055, China

4. Shenzhen New Land Tool Planning & Architectural Design Co., Ltd., Shenzhen 518172, China

Abstract

Sustainable development policies and spatial planning for maintaining greenery are crucial for all major cities in the world, and the measurement of green space indicators in planning practice needs to evolve in response to the demands of the times and technological drivers. This study explores an informal urban green space indicator, the green view index (GVI), which uses the visual perception of an observer to measure the quality of urban space by simulating the pedestrian perspective of the road in street-view image data and then calculating the proportion of vegetation in the road landscape. The GVI is different from macro indicators, such as public recreational green space, forest coverage, and green space rate, which are derived from planning data or remote sensing data in traditional urban planning; it starts from the bottom-up perception of individual residents and is more relevant to their subjective demands. At present, most international cities have made outstanding achievements in controlling public recreational green space, forest coverage, green space rates, and other macrolevel indicators of urban spatial quality; however, with the promotion of the concept of “human-oriented” urban planning, the potential restoration of urban spatial quality at the microlevel is gradually being recognized. To ensure the efficiency and reliability of this study, inspired by computer vision techniques and related GVI studies, a research method based on chromaticity was built to identify the proportions of green vegetation in street view images, and the credibility was improved by eliminating unreliable data. By using this method, we could evaluate a city at an overall scale instead of the previous block scale. The final research result showed that Shenzhen is friendly to human visual senses, and the GVI of the streets in developed areas is generally higher than that in developing areas. The geostatistical analysis of the green viewpoint data provides a more intuitive guide for researchers and planners, and it is believed to inform the planning and design of environmentally friendly, smart, and sustainable future cities.

Funder

Ministry of Science and Technology

Peking University (Shenzhen) Future City Lab

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3