High-Speed Extraction of Regions of Interest in Optical Camera Communication Enabled by Grid Virtual Division

Author:

Hu XinORCID,Zhang Pinpin,Sun YimaoORCID,Deng Xiong,Yang YanbingORCID,Chen LiangyinORCID

Abstract

Optical camera communication (OCC), enabled by light-emitting diodes (LEDs) and embedded cameras on smartphones, has drawn considerable attention thanks to the pervasive adoption of LED lighting and mobile devices. However, most existing studies do not consider the performance bottleneck of Region of Interest (RoI) extraction during decoding, making it challenging to improve communication capacity further. To this end, we propose a fast grid virtual division scheme based on pixel grayscale values, which extracts RoI quickly without sacrificing computational complexity, thereby reducing the decoding delay and improving the communication capacity of OCC. Essentially, the proposed scheme uses a grid division strategy to divide the received image into blocks and randomly sample several pixels within different blocks to quickly locate the RoI with high grayscale values in the original image. By implementing the lightweight RoI extraction algorithm, we experimentally verify its effectiveness in reducing decoding latency, demonstrating its superior performance in terms of communication capacity. The experimental results clearly show that the decoding delay of the proposed scheme is 70% lower than that provided by the Gaussian blur scheme for the iPhone receiver at a transmission frequency of 5 kHz.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3