Abstract
Optical camera communication (OCC), enabled by light-emitting diodes (LEDs) and embedded cameras on smartphones, has drawn considerable attention thanks to the pervasive adoption of LED lighting and mobile devices. However, most existing studies do not consider the performance bottleneck of Region of Interest (RoI) extraction during decoding, making it challenging to improve communication capacity further. To this end, we propose a fast grid virtual division scheme based on pixel grayscale values, which extracts RoI quickly without sacrificing computational complexity, thereby reducing the decoding delay and improving the communication capacity of OCC. Essentially, the proposed scheme uses a grid division strategy to divide the received image into blocks and randomly sample several pixels within different blocks to quickly locate the RoI with high grayscale values in the original image. By implementing the lightweight RoI extraction algorithm, we experimentally verify its effectiveness in reducing decoding latency, demonstrating its superior performance in terms of communication capacity. The experimental results clearly show that the decoding delay of the proposed scheme is 70% lower than that provided by the Gaussian blur scheme for the iPhone receiver at a transmission frequency of 5 kHz.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献