Three-Dimensional Division of Visible Light Communication Irradiation Area

Author:

Zhou YangORCID,Deng YuanzhiORCID,Wen Huajie,Chen Liting,Xu Gang

Abstract

In this article, we divide the irradiated area of visible light communication (VLC) into three parts, according to the influence of diffuse reflection, the irradiance half angle at the source and the communication distance on VLC. We present a volume ratio method to quantitatively analyze each divided part. In this work, based on the Lambertian reflection model of the VLC system in line-of-sight channels, five factors affecting the VLC performance are compared and discussed. A VLC system of a single white-light-emitting diode in a 10 m line-of-sight channel indoors is designed by using the intensity modulation and direct detection technique, and a three-dimensional model of the irradiated area is established.By comparing the distribution of the bit error rate (BER) of the optical signal at different lampshade heights, the volume ratio method is used to calculate the volume percentage of the three irradiated areas. The experimental results show that area II with a volume ratio greater than 50% is the best signal receiving area when compared with areas I and III, having a volume ratio in the range 20∼30%.

Funder

National Natural Science Foundation of China

Science and Technology Planning Project of Shenzhen Municipality

Ordinary University Engineering Technology Development Center Project of Guangdong Province

Department of Education of Guangdong Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3