Lithology Classification Using TASI Thermal Infrared Hyperspectral Data with Convolutional Neural Networks

Author:

Liu Huize,Wu Ke,Xu Honggen,Xu Ying

Abstract

In recent decades, lithological mapping techniques using hyperspectral remotely sensed imagery have developed rapidly. The processing chains using visible-near infrared (VNIR) and shortwave infrared (SWIR) hyperspectral data are proven to be available in practice. The thermal infrared (TIR) portion of the electromagnetic spectrum has considerable potential for mineral and lithology mapping. In particular, the abovementioned rocks at wavelengths of 8–12 μm were found to be discriminative, which can be seen as a characteristic to apply to lithology classification. Moreover, it was found that most of the lithology mapping and classification for hyperspectral thermal infrared data are still carried out by traditional spectral matching methods, which are not very reliable due to the complex diversity of geological lithology. In recent years, deep learning has made great achievements in hyperspectral imagery classification feature extraction. It usually captures abstract features through a multilayer network, especially convolutional neural networks (CNNs), which have received more attention due to their unique advantages. Hence, in this paper, lithology classification with CNNs was tested on thermal infrared hyperspectral data using a Thermal Airborne Spectrographic Imager (TASI) at three small sites in Liuyuan, Gansu Province, China. Three different CNN algorithms, including one-dimensional CNN (1-D CNN), two-dimensional CNN (2-D CNN) and three-dimensional CNN (3-D CNN), were implemented and compared to the six relevant state-of-the-art methods. At the three sites, the maximum overall accuracy (OA) based on CNNs was 94.70%, 96.47% and 98.56%, representing improvements of 22.58%, 25.93% and 16.88% over the worst OA. Meanwhile, the average accuracy of all classes (AA) and kappa coefficient (kappa) value were consistent with the OA, which confirmed that the focal method effectively improved accuracy and outperformed other methods.

Funder

National Defense Pre-Research Foundation of China during the 13th Five-Year Plan Period: the High Spectral Resolution Infrared Space-Based Camera and the Applied Technology

Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3