Classification of Sea Ice Types in the Arctic by Radar Echoes from SARAL/AltiKa

Author:

Fredensborg Hansen Renée MieORCID,Rinne EeroORCID,Skourup HenrietteORCID

Abstract

An important step in the sea ice freeboard to thickness conversion is the classification of sea ice types, since the ice type affects the snow depth and ice density. Studies using Ku-band CryoSat-2 have shown promise in distinguishing FYI and MYI based on the parametrisation of the radar echo. Here, we investigate applying the same classification algorithms that have shown success for Ku-band measurements to measurements acquired by SARAL/AltiKa at the Ka-band. Four different classifiers are investigated, i.e., the threshold-based, Bayesian, Random Forest (RF) and k-nearest neighbour (KNN), by using data from five 35 day cycles during Arctic mid-winter in 2014–2018. The overall classification performance shows the highest accuracy of 93% for FYI (Bayesian classifier) and 39% for MYI (threshold-based classifier). For all classification algorithms, more than half of the MYI cover falsely classifies as FYI, showing the difference in the surface characteristics attainable by Ka-band compared to Ku-band due to different scattering mechanisms. However, high overall classification performance (above 90%) is estimated for FYI for three supervised classifiers (KNN, RF and Bayesian). Furthermore, the leading-edge width parameter shows potential in discriminating open water (ocean) and sea ice when visually compared with reference data. Our results encourage the use of waveform parameters in the further validation of sea ice/open water edges and discrimination of sea ice types combining Ka- and Ku-band, especially with the planned launch of the dual-frequency altimeter mission Copernicus Polar Ice and Snow Topography Altimeter (CRISTAL) in 2027.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference48 articles.

1. Classification of CryoSat-2 Radar Echoes

2. Arctic Climate Change Update 2021: Key Trends and Impacts,2021

3. The emergence of surface-based Arctic amplification

4. Arctic Climate Issues 2011: Changes in Arctic Snow, Water, Ice and Permafrost,2012

5. Regular network model for the sea ice-albedo feedback in the Arctic

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3