Arctic Sea Ice Classification Based on CFOSAT SWIM Data at Multiple Small Incidence Angles

Author:

Liu Meijie,Yan Ran,Zhang Jie,Xu Ying,Chen Ping,Shi Lijian,Wang Jin,Zhong Shilei,Zhang Xi

Abstract

Sea ice type is the key parameter of Arctic sea ice monitoring. Microwave remote sensors with medium incidence and normal incidence modes are the primary detection methods for sea ice types. The Surface Wave Investigation and Monitoring instrument (SWIM) on the China-France Oceanography Satellite (CFOSAT) is a new type of sensor with a small incidence angle detection mode that is different from traditional remote sensors. The method of sea ice detection using SWIM data is also under development. The research reported here concerns ice classification using SWIM data in the Arctic from October 2019 to April 2020. Six waveform features are extracted from the SWIM echo data at small incidence angles, then the distinguishing capabilities of a single feature are analyzed using the Kolmogorov-Smirnov distance. The classifiers of the k-nearest neighbor and support vector machine are established and chosen based on single features. Moreover, sea ice classification based on multi-feature combinations is carried out using the chosen KNN classifier, and optimal combinations are developed. Compared with sea ice charts, the overall accuracy is up to 81% using the optimal classifier and a multi-feature combination at 2°. The results reveal that SWIM data can be used to classify sea water and sea ice types. Moreover, the optimal multi-feature combinations with the KNN method are applied to sea ice classification in the local regions. The classification results are analyzed using Sentinel-1 SAR images. In general, it is concluded that these multifeature combinations with the KNN method are effective in sea ice classification using SWIM data. Our work confirms the potential of sea ice classification based on the new SWIM sensor, and highlight the new sea ice monitoring technology and application of remote sensing at small incidence angles.

Funder

National Natural Science Foundation of China

Shandong Provincial Natural Science Foundation, China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3