Combining FY-3D MWTS-2 with AMSU-A Data for Inter-Decadal Diurnal Correction and Climate Trends of Atmospheric Temperature

Author:

Xia XinluORCID,Zou Xiaolei

Abstract

Microwave temperature sounding observations from polar-orbiting meteorological satellites have been widely used for research on climate trends of atmospheric temperature at different heights around the world. Taking the Amazon rainforest as the target area, this study combined the Microwave Temperature Sounder-2 (MWTS-2) data onboard the Chinese FengYun-3D (FY-3D) satellite with the Advanced Microwave Sounding unit-A (AMSU-A) data onboard the National Oceanic and Atmospheric Administration (NOAA) and the European Meteorological Operational (MetOp) polar-orbiting meteorological satellites (i.e., NOAA-15, −18, −19, MetOp-A, -B). The double difference method was used to estimate and thus eliminate the inter-sensor bias, and a decadal diurnal correction was used to reduce the impact of different local equator crossing times on climate trends. The “no-rain” conditions were determined for AMSU-A data by channels 1 and 15, and for MWTS-2 data by channels 1 and 7. Finally, the decadal linear trends of atmospheric temperature from 1998 to 2020 were obtained after applying the inter-sensor bias calibration and inter-decadal diurnal correction to AMSU-A and MWTS-2 data from NOAA-15, −18, −19; MetOp-A, -B; and FY-3D. A warming trend was found in the AMSU-A window and tropospheric channels (1–9 and 15) and a cooling trend in stratospheric channels (10–14). The warming (cooling) trends of channels 7–9 (10) were relatively small. The warming (cooling) trends of AMSU-A channels 1–6 (14–15) were significantly reduced after the inter-decadal diurnal correction.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3