Abstract
As the number of cross-sensor images increases continuously, the surface reflectance of these images is inconsistent at the same ground objects due to different revisit periods and swaths. The surface reflectance consistency between cross-sensor images determines the accuracy of change detection, classification, and land surface parameter inversion, which is the most widespread application. We proposed a relative radiometric normalization (RRN) method to improve the surface reflectance consistency based on the change detection and chi-square test. The main contribution was that a novel chi-square test automatically extracts the stably unchanged samples between the reference and subject images from the unchanged regions detected by the change-detection method. We used the cross-senor optical images of Gaofen-1 and Gaofen-2 to test this method and four metrics to quantitatively evaluate the RRN performance, including the Root Mean Square Error (RMSE), spectral angle cosine, structural similarity, and CIEDE2000 color difference. Four metrics demonstrate the effectiveness of our proposed RRN method, especially the reduced percentage of RMSE after normalization was more than 80%. Comparing the radiometric differences of five ground features, the surface reflectance curve of two Gaofen images showed more minor differences after normalization, and the RMSE was smaller than 50 with the reduced percentages of about 50–80%. Moreover, the unchanged feature regions are detected by the change-detection method from the bitemporal Sentinel-2 images, which can be used for RRN without detecting changes in subject images. In addition, extracting samples with the chi-square test can effectively improve the surface reflectance consistency.
Funder
the National Key Research and Development Project
Subject
General Earth and Planetary Sciences
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献