Radiometric Normalization Using a Pseudo−Invariant Polygon Features−Based Algorithm with Contemporaneous Sentinel−2A and Landsat−8 OLI Imagery

Author:

Chen Lei1,Ma Ying1,Lian Yi1,Zhang Hu1,Yu Yanmiao1,Lin Yanzhen1

Affiliation:

1. School of Geographic and Environmental Sciences, Tianjin Normal University, Tianjin 300387, China

Abstract

As sensor parameters and atmospheric conditions create uncertainties for at−sensor radiation detection, radiometric consistency among satellite images is difficult to achieve. Relative radiometric normalization is a method that can improve multi−image consistency with accurate pseudo−invariant features (PIFs), especially over large areas or long time series satellite images. Although there are algorithms that manually or automatically select PIFs, the spatial mismatch of satellite images can affect PIF extraction, particularly with artificial pixels. To alleviate this problem, we proposed to use Landsat−8 OLI as the reference image and Sentinel−2A as the subject image, to apply pseudo−invariant features−based algorithms with polygon features through the single−band and multiple−band regression. Compared to pseudo−invariant point features, hyperspectral library, and histogram matching approaches, the results demonstrate the superiority of the proposed algorithms with correlation coefficients of 0.9948 and 0.9945, and an RMSE of 0.0097 and 0.0095 with multiple− and single−band regression, respectively. We also found more accurate linear fitting and better shape matching through band scattering and reflectance frequency analysis. The proposed algorithms are a significant improvement in radiometric normalization, within artificial pixels, achieving spectral signature consistency.

Funder

the Project of Special Investigation on Basic Resources of Science and Technology

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3