Assessment of Empirical Algorithms for Shallow Water Bathymetry Using Multi-Spectral Imagery of Pearl River Delta Coast, China

Author:

Wei Chunzhu,Zhao Qianying,Lu Yang,Fu DongjieORCID

Abstract

Pearl River Delta (PRD), as one of the most densely populated regions in the world, is facing both natural changes (e.g., sea level rise) and human-induced changes (e.g., dredging for navigation and land reclamation). Bathymetric information is thus important for the protection and management of the estuarine environment, but little effort has been made to comprehensively evaluate the performance of different methods and datasets. In this study, two linear regression models—the linear band model and the log-transformed band ratio model, and two non-linear regression models—the support vector regression model and the random forest regression model—were applied to Landsat 8 (L8) and Sentinel-2 (S2) imagery for bathymetry mapping in 2019 and 2020. Results suggested that a priori area clustering based on spectral features using the K-means algorithm improved estimation accuracy. The random forest regression model performed best, and the three-band combinations outperformed two-band combinations in all models. When the non-linear models were applied with three-band combination (red, green, blue) to L8 and S2 imagery, the Root Mean Square Error (Mean Absolute Error) decreased by 23.10% (35.53%), and the coefficient of determination (Kling-Gupta efficiency) increased by 0.08 (0.09) on average, compared to those using the linear regression models. Despite the differences in spatial resolution and band wavelength, L8 and S2 performed similarly in bathymetry estimation. This study quantified the relative performance of different models and may shed light on the potential combination of multiple data sources for more timely and accurate bathymetry mapping.

Funder

Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3